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is the following: a neuron’s choice probability 
depends on the sum over all of its firing rate 
covariances with other neurons, Ckj, weighted 
by their respective readout weights, βj:

where α is a normalization factor. This for-
mula (which is only approximate; the authors 
also supply an exact version) provides the long-
sought relationship between choice probabili-
ties and readout weights in the presence of noise 
correlations (Fig. 1c). It essentially relies on the 
matrix product Cb, which is simply the trial-
to-trial covariance between neural activities rk 
and percept P in the standard model. Although 
it has been intuitively clear that CP measures 
something along these lines, Haefner et al.2 now 
give mathematical grounding to this intuition.

Obtaining the readout weights βk may 
seem straightforward now: we need to solve  
equation (1) by inverting the covariance 
matrix, C. Unfortunately, that is impossible: 
because experimenters record from only 
selected ensembles of neurons for a finite 
number of trials, the covariance matrix can-
not be fully determined. It is known only 
through samples of its elements Ckj, and with 
finite accuracy. How, then, are we to concretely 
exploit the beauty of the CP formula? Haefner 
et al.2 provide two insights into this question.

The first insight—probably the more useful 
in practice—exploits the concept of optimality. 
Ideally, the organism should choose the read-
out weights b optimally, to maximize the vector 
of sensitivity, or signal-to-noise ratio (SNR), 
of percept P. This optimal choice, Fisher’s 
linear discriminant, is well known from the 
statistical literature and relies on the inverse 
of covariance matrix C. As a result, when the 
optimal readout weight vector b(opt) is used, 
matrix C is eliminated from equation (1).  
Better, the exact expressions of b(opt) and 
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Work reported in this issue has derived the long-sought analytical link between neural readout weights and choice 
signals in the standard model of perceptual decision making. This fresh perspective opens the door to experimental 
assessments of percept formation from the activity of sensory neurons.

Decades of research have taught us that our 
mental lives are reflected in the activity of 
neurons. Yet when we perceive an uncertain 
stimulus—was that a friend hustling by on 
the other side of the street?—which neurons 
are really implicated in the formation of the 
mental percept? When deciding on whether to 
shout “hello” or not, do our brains exploit all 
the sensory information available at the neu-
ral level? A first answer to these questions was 
given about 15 years ago, with the surprising 
finding that the activity of single sensory neu-
rons can show detectable traces of a visual per-
cept1. When a monkey has to make a decision 
based on weak or nonexistent visual informa-
tion, small fluctuations of single-neuron activ-
ity in the visual cortex are slightly predictive of 
the animal’s final choice. However, this obser-
vation alone does not tell us whether such 
neurons actively participate in forming the 
animal’s percept or are simply influenced by it.  
In this issue of Nature Neuroscience, Haefner 
et al.2 report significant conceptual progress in 
resolving this long-standing puzzle.

The authors studied the ‘standard model’ 
of percept formation in the context of a two-
alternative forced-choice task (Fig. 1a): a sub-
ject is presented with a set of stimulus values s 
with little informative power, such as a noisy 
set of horizontally moving dots, and must 
decide whether s > 0 (overall motion toward 
the right) or s < 0 (overall motion toward the 
left). Neurons in visual cortex fire whenever 
the physical stimulus is close to their preferred 
stimulus. The relative strength of their firing 
can be interpreted as a vote for their preferred 

stimulus. In the standard model, the animal’s 
percept P, meaning its internal estimation of 
the stimulus s, is formed by weighting the fir-
ing rates rk with ‘readout’ weights βk and sum-
ming them across the population. The readout 
weights capture the nature of percept formation 
in the task: if a neuron’s readout weight is zero, it 
does not contribute to the percept; if the weight 
is nonzero, it contributes, however weakly. 
Finally, the animal’s binary choice in each trial 
is computed by asking whether P > 0 or P < 0.

To determine each neuron’s contribution to 
the visual percept, we therefore need to fig-
ure out the readout weights. Even though we 
can only monitor the neural activity and the 
animal’s choice, this goal seems reachable: if a 
neuron’s readout weight is large, any trial-to-
trial variability in its firing rate will influence 
the animal’s decision. This influence can be 
measured by the choice probability (CP), the 
probability of correctly predicting the animal’s 
choice in each trial based on the neuron’s activ-
ity (Fig. 1b). Unfortunately, however, a large 
CP value does not automatically imply a large 
readout weight. Imagine a neuron that receives 
synaptic inputs from a second neuron with 
a large readout weight (and thus a large CP 
value). Through this input, the first neuron’s 
activity will partly reflect that of the second, 
leading to a substantial CP value. For all we 
can tell, however, the first neuron’s readout 
weight may very well be zero.

More generally, researchers have noted 
that if the activity of pairs of neurons cova-
ries from trial to trial—that is, if neural firing 
rates are correlated—then it is nontrivial to 
discern the link between CP values and read-
out weights. Although several previous studies 
have explored this link for a few specific sce-
narios using computer simulations, Haefner 
et al.2 now provide the general solution, by 
deriving the link between CP and readout 
weights analytically. The authors’ main result 
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More generally, Haefner et al.2 show how the 
difficulty of estimating the readout weights is 
directly related to the amount of heterogene-
ity in the population. Experimenters recording 
from a small sample of the full population can 
only hope to build a ‘smooth’ estimate of the 
covariance matrix, based on other features of 
the population such as tuning. The fine struc-
ture of C, corresponding to heterogeneous 
and local patterns of covariance, will remain 
elusive—and so will all corresponding compo-
nents of readout vector b. However, because 
any information extracted from these local 
structures will still affect CP values (gener-
ally making them smaller than their smooth 
predictions), it remains possible to experi-
mentally estimate the amount of informa-
tion extracted from the local structure of  
cortical connectivity.

The study of Haefner et al.2 provides the 
first thorough interpretation of CP signals 
in the standard, linear model of decision  
making. Although time is absent in their deri-
vations, their main results carry over to tem-
poral versions of the standard model, where 
the percept P is built from a linear sum of 
spike trains across neurons and across time. 
Thus, by looking at the temporal evolution of 
CP signals, experimenters may also be able to 
decipher when and how long sensory spikes 
are integrated to form the percept. Indeed, the 
authors’ results are ripe for experimental test-
ing, and such tests may clarify to what extent 
the standard model of percept formation is 
correct. For example, Nienborg and Cumming 
recently noted an oddity in the temporal 
evolution of CP signals in macaque second-
ary visual cortex, whose most parsimonious 
explanation would rely on the animal’s choice 
feeding back into the sensory area and biasing 
its activity from trial to trial4. Whether this 
effect is indeed due to feedback, and whether 
it can be accounted for linearly, is unknown to 
this day. Thanks to the elegant analysis of CP 
signals of Haefner et al.2, the main issues and 
conceptual problems have now been clarified. 
The ball is now in the court of experimental 
laboratories that can perform the suggested 
tests on their neural recordings and bring us 
another step closer to solving the puzzle of 
percept formation.
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proportionality term α lead to the following 
prediction: CPk

(opt) ∝ SNR(rk)/SNR(P(opt)). 
In words, if the animal optimally extracts 
information from its sensory neurons, then 
each neuron’s CP value will reflect the ratio 
between this neuron’s sensitivity (its so-called 
neurometric threshold) and the overall sen-
sitivity of the animal (its so-called psycho-
metric threshold). Both types of sensitivity 
are routinely estimated from data, making 
this optimality test both simple and experi-
mentally accessible. Of course, electrophysio-
logical recordings may not pass this test. For 
example, by measuring CP values in a monkey 
faced with a novel behavioral task, Uka and 
DeAngelis found indirect evidence that the 
animal did not use all the neural information 
available, simply because it had not yet learned 
to do so3. Even in such a case, however, the test 
devised by Haefner et al.2 allows us to quantify 
and assess any deviations from optimality.

The second insight—slightly more techni-
cal—sheds light on what information about 
the readout weights βk we can, or cannot, 
reconstruct on the basis of experimental 
measures. The argument relies on the eigen-
decomposition of covariance matrix C. We 
know that C can always be decomposed into 
(at most) n orthogonal eigenmodes (or prin-
cipal component axes) {vi}i = 1...n. Each axis vi 
defines one possible ‘pattern of covariation’ in 
the population, whose variance is captured by 
the corresponding eigenvalue λi . Then, if we 
write CP for the vector of the individual neu-
rons’ CP values, we can re-express the CP pro-
file as CP ∝ Σi = 1...n λi ν (i)vi, where ν (i) is the 
projection of the readout vector b onto the ith 
principal component axis. According to this 
formula, any component ν (i) of readout vector  
b corresponding to an eigenvalue λi = 0 for 
matrix C cannot affect CP values—and, thus, 
cannot be retrieved from the CP profile.

Figure 1  The link between readout weights and choice probability signals in the standard model 
of percept formation. (a) The standard model of percept formation. Neurons with different tunings 
represent a stimulus (for example, the direction of a motion stimulus). The closer the stimulus is to a 
neuron’s preferred tuning, the more strongly that neuron fires. The resulting firing rates are weighted 
through the readout weights βk and then summed to form the percept P. The sum is thresholded to give 
rise to the animal’s decision. (b) Choice probability. If a neuron fired more strongly when the animal 
decided for one option (yellow, histogram across trials) than the other (blue), then the neuron’s firing 
rate carries information about the animal’s choice. The probability with which one can correctly guess 
the animal’s choice on each trial is called the choice probability and is estimated from the overall 
amount of separation between the two distributions. Adapted from ref. 3 with permission. (c) Readout 
weights and noise covariance. The readout weights (top left) determine each neuron’s contribution to 
the final percept. The choice probability of each neuron (bottom left) is given by a weighted sum over 
all readout weights. The summing weights, in turn, are determined by each neuron’s noise covariances 
(right) with all other neurons. Adapted from ref. 2 with permission.
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